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Thermodynamical approach to the brittle fracture 
of dry plasters 
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Centre de Recherche sur los Mecanismes de la Croissance Cristalline, CNRS, 
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The evolution of the fracture toughness, K~o, and fracture energy, G~c, of set plasters was 
determined on notched beams as a function of sample porosity, P, and characteristic size, W. 
Toughness was found to decrease with decreasing crack width. For set plasters of 57.7% 
porosity, the lowest toughness measured was Kjo=0.13 MPa m 1/2 for a crack width of 
0.2 mm. For this crack width, fracture toughness and fracture energy linearly changed with 
porosity: K~c=0.5 (1-1.3 P) MPa m 1/2 and G~c= 13.47 (1-1.12 P) J m-2. Dense plasters were 
more difficult to break than porous ones. The fracture energies were affected by the velocity 
of the fracture propagation, which induces damaging and multicracking of the material, so 
that the roughly calculated chemical surface energy of set plaster was too high. After 
correction it was estimated to be 0.4 J m-2. Finally, because toughness increased with 
increasing sample size, it was concluded that fracture toughness and energy were not 
intrinsic parameters of the material. On the other hand, for our sample porosities and sizes, 
the reduced rupture force, F~uptW -~ is a constant and seems to be a characteristic 
parameter of the mechanical resistance of set plaster beams. 

1. Introduction 
Plaster is a much appreciated building material espe- 
cially because it exhibits weak apparent densities and 
is a good phonic and thermic insulator, all these quali- 
ties arising from its high porosity. In addition, this 
highly porous material has a surprisingly high mech- 
anical strength especially when it is dry. Several at- 
tempts have been made to quantify the mechanical 
properties of plaster as a function of its porosity [1-5]. 
It was shown that dry plaster is a linear elastic brittle 
material, but also that hardness, modulus of elasticity 
and strength do not properly describe the brittle frac- 
ture, especially in relation to strength, which is some- 
what affected by the size of the samples [5]. This is 
also valid for some other brittle materials [63. In order 
to describe the brittle fracture of plaster better, we 
used the linear elastic fracture mechanics (LEFM) 
theory. 

Special attention was paid to the experimental con- 
ditions of the tests carried out on notched beams. 
Results are given in terms of fracture toughness and 
fracture energy which lead to microscopic consider- 
ations about the brittle fracture. 

Finally, a study of fracture toughness was made as 
a function of sample size to decide whether fracture 
toughness is an intrinsic parameter of the brittle rup- 
ture of dry plaster. A new parameter is proposed to 
provide a better description of the brittle fracture of 
dry plaster. 
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2. Theory 
The fracture mechanics concepts imply two conditions 
for achieving the fracture of a material. First, accord- 
ing to the energy balance proposed in Griffith's model 
[7], fracture occurs when the energy released by the 
crack propagation is large enough to supply the en- 
ergy necessary to create new fractured surfaces. If Go is 
the fracture energy and ysg the surface energy in Grif- 
fith's terminology, then fracture occurs when 

Gc > 2~'sg (1) 

If Gc = 27sg, the rupture is controlled and the crack 
growth is slow. If Go >> 27sg the crack grows very rap- 
idly and fracture is catastrophic. Go is the critical 
strain energy release rate and gives an idea of the 
energy magnitude needed to extend the fracture and to 
produce a flat surface of unit area. This approach does 
not take into account the microscopic phenomena 
happening around the crack tip. 

Second, for a homogeneous infinite linear elastic 
material, it was shown by Irwin [8] that the stress field 
around a crack can be characterized by a parameter 
K called the stress intensity. In the vicinity of the crack 
tip, the components of the stress tensor, cru, take the 
form 

K 
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where r and 0 are the polar coordinates of the point 
where the stress tensor is calculated, f~j is a function 
depending on the geometry of the sample and the way 
the stress is applied. K is therefore a stress-field para- 
meter which links the magnitude of the stress intensity 
near the crack tip to both the stress applied to the 
solid structure and the geometry of the sample. K is 
independent of the material, but, when fracture occurs, 
it takes a critical value Ko, termed the fracture tough- 
ness. Kc is a property of the material and depicts its 
resistance to cracking. 

In summary, fracture mechanics provides two para- 
meters, Gc and Ko, which are supposed to describe 
intrinsically the material rupture and should be inde- 
pendent of the geometry of the sample. We shall come 
back to this subject later. 

A crack can be stressed in three modes: I (cleavage), 
II (plane shear) and III (anti-plane shear). According 
to Kendall [9], only mode I is important when the 
sample undergoes flexion. When the crack propagates, 
the fracture toughness can be described by 

Kic = YCYrupt al/2 (3) 

where KIc is the critical stress intensity factor of mode 
I, (Yrupt the strength of the material, a the depth (length) 
of the fracture, and Y a parameter depending on the 
sample geometry. According to Paris and Sih [10], 
Y is a polynomial in a/W, where W is a characteristic 
dimension (Fig. 1) of the sample. For a single-edge 
notched sample loaded in a three-point flexural test 
with L = 4W, Y may be written, if 0.1 < a/W <_ 0.55 
[11] 

a 
Y = 1.93 - 3.07 

+ 25.8 4 

Before determining 
following comments. 

(4) 

Kic values, we can make the 
Equation 2 diverges when 

r tends to zero, i.e. in the vicinity of the crack tip, 
which means that the theory of elasticity does not 
really describe the behaviour of the material near the 
tip. According to Irwin, one way to deal with this 
discrepancy is to consider that the material exhibits 
some plasticity or is somewhat damaged around the 

I d 

I-" L -I 
Figure 1 Characteristic dimensions of the notched beams used in 
the three-point bending test for measuring the fracture toughness. 
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crack tip, so that the theory of elasticity is no longer 
valid within a zone of radius R around the crack tip. 
R can be estimated [12] from 

R ~  1 ( K I ~ )  2 (5) 
H \ ([Yrupt// 

whe re  O'rupt is the strength of the material under con- 
sideration. In order that the LEFM theory is applic- 
able, the damaged zone must be much smaller than 
the sample size and the following conditions must be 
fulfilled 

a,b > 2 . 5 ( / I ~ c ~  2 (6a) 
\ CYrupt/t 

and 

W>_5( KI~c~ 2 (6b) 
\ C~upt/ 

Another possibility to check the size conditions is to 
consult Carpinteri's chart [13] where it is shown that 
in the case of a three-point flexural test, the LEFM 
theory is valid only if 

KIc 
S -- CYrupt W1/2 ~ 0.5 (7) 

IfS _> 0.5, the beam is damaged and the theory cannot 
explain the results. For each test, the value of S is given 
to check the accuracy of the experiment. 

Taking into account Griffith's energy balance con- 
dition, and assuming that the material has a linear 
elastic behaviour, Irwin demonstrated [14] that frac- 
ture toughness can be related to Griffith's fracture 
energy, so that 

K?o 
Gic -- (8) 

E 

where E is the modulus of elasticity of the material. 
Accordingly, Griffith's surface energy (Equation 1) is 

Gic 
7sg = ~ -  (9) 

3. Experimental procedure 
Preparation of the plaster samples (5 x 25 x 25 cm 3) 
was described elsewhere [-4, 5]. In short, set plaster, 
made of gypsum needles CaSO4" 2H20, was obtained 
by hydration of ~ or [3 hemihydrate CaSO4, 0.5 H20. 
Once the plaster had set, the needles formed a solid 
structure, the porosity of which ranged from 
41-65 vol % as the water/hemihydrate ratio ranged 
from 50-109 wt %. The samples were dried at 42 ~ 
and 20% relative humidity under atmospheric 
pressure because these conditions induce the best 
mechanical strength despite the fact that gypsum 
should slowly convert into hemihydrate, as shown by 
the thermodynamic phase diagram [4]. Fig. 2 is a typ- 
ical scanning electron micrograph of a plaster with 
65 vol % porosity. 

The plaster beams used in the three-point flexion 
test where shaped by sawing the large samples 
prepared in the way previously described. To avoid 



Figure 2 Typical aspect of a set plaster (65 vol % porosity) observed 
by scanning electron microscopy. 

artefacts due to crystal orientation effects, all parts of 
the samples in contact with the walls of the moulds, 
were eliminated. In order to determine the evolution 
of fracture toughness and energy as a function of 
porosity, the beam dimensions (Fig. 1) were 
L x b x  W = 12x 1 .5x3 cm 3. 

In the second part of our study, to detect a possible 
size effect of the sample on plaster toughness, the beam 
dimensions were chosen so that L = 4W, b = 1.5 cm 
and a/W=2 with W = I ,  1.5, 3 and 5cm and 
b = 1.5 cm. 

It is noteworthy that the two beam types were 
homothetic with respect to their height W, distance 
L between the knife edges of the press and depth a of 
the crack. 

Finally, to determine the different properties of the 
samples, we used a Hadamel-Lhormargy D Y 30 
press, with an imposed strain rate of 0.1 mmmin-1 .  

4. R e s u l t s  
4.1.  I n f l u e n c e  o f  crack width 
As the dimensions of the plaster beams were fixed, it 
was first necessary to check whether the crack dimen- 
sions (width and depth) had an influence on the frac- 
ture toughness. As the radius of curvature is difficult 
to appreciate, attempts were made to measure the 

fracture toughness as a function of the crack width, 
hoping to reach a lower limit which should be the 
intrinsic value of the fracture toughness. The cracks 
were shaped with saws the width of which ranged from 
2-0.2 mm. In the latter case, the width was sometimes 
reduced by compression of the crack tip with a razor 
blade. The fracture toughness was measured on plas- 
ter samples exhibiting a porosity of 57.7%. The results 
are given in Table I. It is seen that toughness decreases 
with decreasing crack width but it is not certain if 
K~c = 0.13 M P a m  in is the smallest possible value of 
K~o because cracks thinner than 0.2 mm could not be 
produced. It must be pointed out that the thinnest 
crack obtained with the razor blade indeed gave rise 
to the smallest K~ value, but not with the lowest 
standard deviation. For  this reason, it was preferred to 
work with crack tips of 0.2 mm width which provided 
the lowest standard deviation of fracture toughness, 
bearing in mind that the measured K~ is not exactly 
the intrinsic parameter of plaster. 

4.2. Influence of crack depth 
The plaster beams used to measure the fracture tough- 
ness again had dimensions L x b x W = 12 x 1.5 x 0.5 
cm 3 but the crack depths were adjusted so that 
a/W = 0.2, 0.4 and 0.5. Table II lists, for different 
crack depths, the fracture toughness, KIo, brittleness 
number, S, Young's modulus, E, rupture energy, G~c, 
and Griffith's surface energy, y~g, of plasters in the 
41.4-65.0 vol % porosity range. Each fracture tough- 
ness was obtained from measurements carried out on 
at least eight samples. The standard deviation of the 
values is about 5% or less. The elasticity moduli were 
calculated from a model linking them to porosity [5]. 
The standard deviation of Young's moduli is about 
10%. From this, the standard deviation of rupture 
energy was expected to be about 20%. From Table II, 
and from the previous considerations, it can be con- 
cluded that fracture toughness does not depend on the 
initial crack depth, at least in the depth range investi- 
gated here. 

In the porosity range investigated, both fracture 
toughness (Fig. 3) and fracture energy (Fig. 4) can 
be described using a linear relationship with plaster 

T A B L E  I Plaster toughness, K~c, and brittleness number, S, for different crack widths and depths (1": + 1 mm with a razor blade) 

Crack shape Width (mm) Depth (mm) K~o (MPa m ~n) S Number  of 
samples 

[ 2 15 0.167 _+ 8% 0.25 10 

1 [ 
[ 1 15 0.149 _+ 10% 0.23 14 

l [ 
I 0.4 15 0.145 _+ 5.6% 0.22 14 

i 

I 
[ 0.4 + 0.2 13 + 2 0.139 __+ 5% 0.21 14 

l= 
I 
l 0.4 + 0.2 12 + 2 + 1" 0.130 _+ 7.5% 0.20 10 

I=- [ 
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T A B L E I I Evolution of plaster toughness, Ktc, for three crack widths (mm), brittleness number, S, Young's modulus, E, rupture energy, G~c, 
and Griffith surface energy, Ysg, as a function of water/hemihydrate ratio and corresponding porosity, P 

Water/hemihydrate ratio 

0.5 0.65 0.68 0.74 0.775 0.80 0.82 0.93 1.05 1.09 

P (vol%) 0.414 0.51 0.525 0.55 0.56 0.57 0.577 0.6 0.638 0.65 
K~c 0.5 mm 0.245 0.161 0.156 0.151 0.147 0.142 0.13 0.111 0.096 0.086 
0.4ram - 0.167 - 0.14 0.134 - 0.117 0.094 - 
0.2mm - 0.175 - 0.152 0.139 - 0.116 0.055 - 
/s 0.245 0.I67 0.156 0.151 0.146 0.139 0.13 0.114 0.095 0.086 
S 0.19 0.23 0.18 0.23 - 0.19 0.23 0.23 0.17 

E* (GPa) 8.14 5.26 4.86 4.23 3.99 3.76 3.6 3.09 2.34 2.12 
GIo (Jm -2) 7.37 5.3 5 5.39 5.34 5.13 4.69 4.2 3.85 3.48 
y~g (Jm -2) 3.68 2.6 2.5 2.69 2.67 2.565 2.345 2.1 1.92 1.74 
7sg (Jm 2) p = 0 6.28 5.3 5.26 5.97 6.06 5.96 5.54 5.25 5.3 4.97 
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Figure 3 Fracture toughness of dry set plasters as a function of their 
porosity. 
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Figure 4 Fracture energy of dry set plasters as a function of their 
porosity. 

po ros i ty  

K~c = 0.5(1-1.3 P) M P a m  1/2 (r 2 = 0.986) (10a) 

a~c = 13.47(1-1.12 P)  J m  -2  (r 2 = 0.921) (10b) 

Accordingly ,  dense plasters  are more  difficult to b reak  
than  more  po rous  ones. In  addi t ion ,  y~g varies like G~o, 
so tha t  

Ysg = ysg(O)(1 -- P)  (11) 
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where 7sg(O) is Griffi th 's  surface energy at  po ros i ty  
P = 0 .  

It  turns  out  tha t  %g(0) is a b o u t  6 -7  J m  -2, a value 
which is much  larger  than  those  usual ly  de te rmined  by  
cleavage of single crystals  [15]. Accordingly ,  it m a y  be 
poss ible  to find the physical  significance of Griff i th 's  
surface energy by means  of mechanica l  tests. 

4.3. Analysis  of the fracture energy  
Figs 5 and  6 show the typical  aspect  of a no tched  
sample  after crack p ropaga t ion .  At  low magnif ica t ion  
(Fig. 5) we first note  tha t  the main  fracture is very 
rough  so tha t  the area  of the crack  is much larger  than  
the area  deduced  f rom the geometr ica l  section. At  
higher  magni f ica t ion  (Fig. 6) we also see tha t  a r o u n d  
the ma in  crack  there is an i m p o r t a n t  ne twork  of side 
cracks.  These secondary  cracks do no t  direct ly  
con t r ibu te  to the b r e a k d o w n  of the solid but  they 
obvious ly  consume pa r t  of the rup ture  energy. F o r  
es t imat ing  the a m o u n t  of energy real ly spent  to open 
the main  crack,  it is necessary,  as far as possible,  to 
es t imate  the real  fracture a rea  issued from the 
p r o p a g a t i o n  of the ma in  crack  in the sample.  In  o rder  
to es t imate  this c rack  area, a t t empts  were made  to 
es t imate  its real  length by measur ing,  s tep-by-s tep  on 
a p h o t o g r a p h ,  crack pieces of abou t  10 gm. It  was 
found tha t  the crack was at least  1.6 t imes longer  than  
the value previous ly  ob ta ined  assuming tha t  the crack 
is a s t ra ight  line. If  this is val id  for the d i rec t ion  
no rma l  to the crack  p ropaga t ion ,  the real  value of G~c 
would  be at  least  (1.6) 2 smal ler  than  that  previous ly  

calculated.  
Tak ing  account  of the surface correct ion,  for a plas-  

ter of poros i ty  P = 57.7%, the fracture energy of 
which is abou t  5 J m - 2, leads to Ysg ~ 1 J m -  2. These 
values become more  c o m p a r a b l e  to those ob ta ined  by  
cleaving single crystals  of minera ls  [15]. 

Now,  to dis t inguish the energy really spent  to open 
the ma in  crack,  from tha t  spent  in d a m a g i n g  and  
mul t i -c rack ing  the mater ia l ,  we can recall  some results 
ob ta ined  by  s tudying  the slow p r o p a g a t i o n  of cracks 
th rough  different mater ials .  Such studies carr ied  out  
on glasses [16] and polycrys ta l l ine  ceramics [17] 
showed tha t  it is poss ible  to detect  crack p r o p a g a t i o n  
pr io r  to mate r ia l  rupture .  F o r  dry  set p las ters  [18], 



Figure 5 Lateral view of a cracked notched beam. 
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Figure 7 Growth rate of cracks propagating in an inorganic glass 
immersed in (~) water or (0) paraffin [171 and (11) in a plaster of 
53 vol % porosity immersed in paraffin [181. 

Figure 6 Lateral network of side cracks originating from a main 
crack developed at a high propagation rate. 

catastrophic failure of the samples occurs when the 
crack velocity, V, exceeds l x l 0 - 4 m s  1. Fig. 7 
shows Williams and Marshall 's results [171 for an 
inorganic glass and those of Takatsu ef al. E18] for 
a dry plaster of 53.3% porosity. In the former case, the 
sample was placed in dry paraffin or in water. In 
paraffin, the results depended on the stress intensity 
applied to the sample. When the stress, K~, was small, 
the crack propagat ion was slow: it was the chemical 
reaction (adsorption, diffusion) near the crack tip 
which controlled the propagat ion rate. At intermedi- 
ate stress intensities, diffusion of corrosive species to- 
wards the crack was rate controlling. At high stress 
intensities, a mixture of corrosive and mechanical fail- 
ure takes place. According to Maugis [19], the sole 
case where the crack propagat ion energy is twice Grif- 
fith's surface energy, is the case where the crack propa- 
gation is very slow, about  1 x 10 10 m s - 1  for brittle 
solids. Only in that case does G~ correspond to the 
chemical energy spent to open the main crack, be- 
cause, for very low crack propagat ion rates, there is no 
multi-cracking around the main crack. 

For  plasters, the crack energy is not known for such 
low crack velocities, as the slowest rate measured on 
plasters is about  1 x 10 .7 m s  -1 [18]. Accordingly, 
(Fig. 7), it is likely that under such conditions the 
crack energy mainly corresponds to a mechanical fail- 
ure and has nothing to do with a pure chemical 
surface energy. However, if we assume a linear rela- 
tionship between In KI and In V (Fig. 7), a linear re- 
gression on Takatsu et al.'s results [18] yields 

in Ki = 0.029 in V -- 1.57 ([2) 

so that for a dry plaster with 53.3% porosity 

KI = Kic = 0.16 M P a m  1/2 

K~ = 0.106 M P a m  1/2 

for V = l x l 0 - 4 m s  -1 

(13a) 

for V =  l x l 0  1 ~  -1 

(13b) 

It is noteworthy that the fracture toughness deter- 
mined by Takatsu et al. is consistent with our results. 
Taking a mean value [5] of 5.5 G P a  for the modulus 
of elasticity of plaster, we have 

G~ = G~c = 4.58 J m  -2 for V =  1 x 1 0 - 4 m s  -1 

(14a) 

G = 2 % g = 2 . 0 5 J m  -z  for V =  l x l 0 - 4 m s  -1. 

(14b) 

Taking the fracture roughness into account (1.6 x 1.6 
correction term) the chemical surface energy of set 
plaster should be 75 ~ 0.4 J m  -2. 

Finally, because ?sg ~ 1 J m -  2, it results that about  
0.6 J m -  2 is spent for damaging and multicracking the 
material. This value is of the same order of magnitude 
as those obtained by cleavage of single crystals of ionic 
crystals such as NaC1, LiF, CaCO3 [15]. 

4.4. S a m p l e  size and  f r ac tu re  t o u g h n e s s  
Tensile or flexion strengths of unnotched beams are 
dependent, for some brittle materials, on sample size 
[5, 6]. In addition, even for the same size, reproduci- 
bility of the results is rather poor. On notched beams, 
the standard deviation obtained in the values of frac- 
ture toughness was reduced to about  5% but up to 
now, no comment  has been made on the eventual 
variation of fracture toughness with sample size. To 
investigate this parameter,  samples were shaped as 
shown in Fig. 1, under the conditions that L = 4W, 
W = 1 , 1 . 5 , 3  and 5cm,  b = l . 5 c m  and a = W / 2 .  
Such samples are homothetic in length, height and 
crack depth but not in thickness. Homothe ty  could 
not be strictly kept for technical reasons: the largest 
samples would have been too large for our press, 
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T A B L E  I I I  Plaster toughness, K~c, for different hydration ratios, Wa/He, and sample sizes, W. 

Wa/He Sample size, W (mm) 

1 1.5 3 5 

K~c S.D. No. of KIr S.D. No. of K~r S.D. No. of K~r S.D. 
(MPam 1/2) samples (MPam 1/2) samples (MPam 1/2) samples (MPam 1/2) 

No. of 
samples 

1.09 0.073 _+ 0.009 15 0.079 + 0.007 13 0.087 
0.82 0.103 + 0.004 21 0.117 • 0.008 16 0.13 
0.68 0.139 _+ 0.018 16 0.149 _+ 0.01 15 0.154 
0.50 0.191 + 0.012 10 0.215 + 0.009 10 0.245 

_+ 0.008 7 
• 0.01 7 
• 0.009 8 
+ 0.019 10 

0.092 • 0.007 5 
0.144 _+ 0.007 6 
0.150 _+ 0.002 4 
0.25 _+ 0.007 6 

whereas the smallest samples would have given rise to 
rupture strengths less than 10 N and not measurable 
with good accuracy. 

The results obtained with four sample sizes of the 
same geometry are given in Table III for plasters of 
different porosity and composition. Standard devi- 
ations and the number of samples tested are also 
given. Fracture toughness increases with increasing 
sample size. Accordingly we must conclude that frac- 
ture toughness and fracture energy are not intrinsic 
parameters of the material and that another formalism 
should be found to describe the mechanical resistance 
of plaster. 

5. Discussion 
The fact that the chemical surface energy of dry plaster 
is about 0.4 J m-2  suggests that the crystals in contact 
are linked by ionic bonds, notwithstanding that, on 
a macroscopic scale, they are completely disordered 
with respect to each other. Only ionic bonds are 
strong enough to explain the mechanical resistance of 
such a disordered structure. Even if nucleation and 
growth of each gypsum crystallite occur randomly 
prior to setting, it seems that some microscopic re- 
arrangement of the interfaces accompanies hardening. 
The LEFM theory does not suppose any variation of 
the fracture toughness with sample size. For  the three- 
point flexure test, the strength of the sample is cal- 
culated from the rupture force of the sample, and from 
its geometry L, b, W 

3 F~uptL (15) 
O'rupt = ~2 bVI/2 

where Fr~pt is the rupture force of the sample. If this 
value of f~upt is inserted in Equation 3, bearing in mind 
that a / W  = 2, L = 4W and b is constant, it turns out 
from Equations 3 and 4 that 

Kic = Erupt W -  1 /2Cte  (16) 

According to the LEFM theory, Kic should be con- 
stant. In this hypothesis, it turns out that 

Frup t rgv - 1/2 = Cte (17) 

If Weibull's theory is applied [4, 20] to samples of 
sizes i and j having volume Vi and Vj and mean 
rupture strengths c% and ~j, we can write for un- 
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notched beams 

with 

and 

(si Vi 1/"' = Cte (18) 

3 Frupt,Li (19) 
r - 2 b W i  2 

Vi = b W i L i  (20) 

ml, being Weibull's moduli. In our case, with L = 4W 
and b = Cte, Equation 17 can be rewritten as 

Frup t w 2 / m i  - 1 = Cte (21) 

For  a mean Weibull's modulus m = 9 [5], we have 

Erupt W - 0 ' 7 8  =- Cte (22) 

Because the theory of elasticity and the LEF M theory 
poorly describe the experimental data but lead to 
scaling laws linking rupture force and sample size, an 
attempt was made to analyse the results obtained on 
notched beams using this formalism. More precisely, 
the evolution of the rupture forces was studied as 
a function of the characteristic dimension, W, of the 
samples: for each piaster in Frup, was plotted against 
In W (Fig. 8). By linear regression, for plasters of 
65vo1% porosity, we found F r u p t W a = C t e  for 
<z = -  0.65 _+ 0.09. Table IV shows the results ob- 
tained with plasters of different porosities. It turns out 
that FruptW -~  may be considered as a reduced 
rupture force of plasters, independent of sample size. 

In addition, the exponent a = - 0.65 _ 0.09 seems 
to be independent of plaster porosity. The present 
reduced rupture force may, therefore, be considered as 
an intrinsic parameter of plaster at least for the sample 
geometry and sizes investigated here. As a is clearly 
different from - 0.50, which would be the character- 
istic exponent of W in the LEF M theory, it can also be 
concluded that this theory cannot account for the 
evolution of the mechanical strength of plasters as 
a function of size. 

It is also noteworthy that the reduced rupture 
strength can be used now to standardize the mechan- 
ical properties of plaster and predict the rupture force 
of any plaster of any size. Fig. 9 shows the evolution of 
the reduced rupture strength for plasters of different 
porosities from which it is easy to deduce the rupture 
stress, Frup,, of the material knowing its characteristic 
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Figure 8 Scaling law between the mean rupture force and the 
characteristic size of plaster samples (porosity = 57.7%). 

T A B L E  IV Exponents, ~, of the reduced rupture force 
F r u m W - a = C t e  for plasters produced with different water/ 
hemihydrate ratios 

Wa/He Frum W-~ = Cte 

r 2 

1.09 0.65 4- 0.11 
0.82 0.67 4- 0.04 
0.68 0.55 +_ 0,06 
0.50 0.64 4- 0,05 
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Figure9 Reduced rupture strength for plasters of different 
porosities. 

dimension, W. However, it must be pointed out that 
the validity of our model should be confirmed using 
much larger solid structures, because, for technical 
reasons, we could not investigate homothetic samples 
longer (L) than 20 cm and thicker (W) than 5 cm. 

We can at least add that this new approach to 
brittle material mechanics, using a reduced rupture 
force, is supported by numeric simulations describ- 
ing the brittle fracture of two-dimensional networks 
of beams. In these simulations, the constitutive 
beams of the lattice all have the same elasticity, 
but various breaking thresholds drawn at random 
from a continuous distribution [21, 22]. It appears 
that the reduced rupture force, Frum W% is a character- 

istic parameter of the mechanical resistance of brittle 
materials, especially because it is not size dependent. 
This work is one of the first attempts to extend to real 
three-dimensional materials the theories which were 
proposed to rule the fracture of two-dimensional 
brittle structures. 

6. Conc lus ion  
From previous experiments, we conclude that the 
LEFM theory, which supposes that the solid exhibits 
a good homogeneity around the tip of the growing 
crack, does not properly describe the brittle fracture of 
set plasters. This theory involves the rupture stress 
being independent of sample size, which is not the 
case. Nevertheless, the data obtained from fracture 
experiments on notched beams can be used to define 
a new intrinsic parameter of the brittle fracture, free of 
assumptions concerning the material structure: the 
reduced rupture force, Frupt W -  0 . 6 5  allows plasters to 
be classified as a function of their resistance. As the 
exponent of W seems to be independent of the plaster, 
it is possible to classify any new plaster as soon as 
rupture force and size are known. However, it is note- 
worthy that these conclusions are drawn from results 
obtained with a certain sample geometry and size. 
They should be verified on samples exhibiting smaller 
and larger sizes. 

Considering that the LEF M theory gives compara- 
tive results at constant sample size, it was interesting 
to analyse the energetic content of the fracture energy. 
Taking account of the important roughness of the 
fractured surfaces, and of the velocity of the crack 
propagation, it could be deduced that the chemical 
surface energy of plaster was around 0.4 J m -  2, so that 
more than 50% of the energy spent to develop a crack 
is lost in damaging and multicracking the material. 
We conclude that the cohesion of plaster is due to 
electrostatic interactions between the microcrystals 
which form the solid structure. 
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